• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall

Menu Menu schließen
  • Team
    • Principal Advisors
    • Doctoral and Postdoctoral Researchers
    • Associated Doctoral Researchers
    • Mercator Fellows
    • External Advisory Board
    • Coordination and Administration
    • Alumni
    Portal Team
  • Research
    • Projects
      • P1 – Chemistry at the Crack Tip
      • P2 – Atomistics of Crack-Heterogeneity Interactions
      • P3 – Fracture in Polymer Composites: Nano to Meso
      • P4 – Fragmentation in Large Scale DEM Simulations
      • P5 – Compressive Failure in Porous Materials
      • P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • P7 – Collective Phenomena in Failure at Complex Interfaces
      • P8 – Fracture in Polymer Composites: Meso to Macro
      • P9 – Adaptive Dynamic Fracture Simulation
      • P10 – Configurational Fracture/Surface Mechanics
      • P11 – Fracture Control by Material Optimization
      • P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • P13 – Modelling of fragmentation and fracturing processes in deformation bands and faults, from single grains to seismic-scale faults
      • P14 – Passage from Atomistic-to-Continuum for Quasistatic and Dynamic Crack Growth
    • Publications
    Portal Research
  • Qualification
    • Registration
    • Registration Example
    • Registration P 1
    • Registration P 3
    • Registration P 4
    • Registration P 5
    • Registration P 6
    • Registration P 7
    • Registration P 8
    • Registration P 9
    • Registration P 10
    • Registration P 11
    • Registration P 12
    • Registration P 13
    • Registration P 14
    • Registration P1 (cohort 3)
    • Registration P4 (cohort 3)
    • Registration P5 (cohort 3)
    • Registration P6 (cohort 3)
    • Registration P7 (cohort 3)
    • Registration P9 (cohort 3)
    • Registration P10 (cohort 3)
    • Registration P11 (cohort 3)
    • Registration P14 (cohort 3)
    Portal Qualification
  • Events
    • Upcoming Events – Calendar
    • Archive
      • 2023
      • 2022
      • 2021
      • 2020
      • 2019
      • 2018
    Portal Events
  • Equal Opportunities
    • The Sky is the Limit – Female STEM Scientists at FAU
    • Workshops & Seminars for Gender Equality at FRASCAL
    • Further Measures at FRASCAL
    • Office for Gender and Diversity
    Portal Equal Opportunities
  • Downloads
    • General Information
    • Annual Reports
    • Alumni and Visitors Workshops
    • RTG Seminars
    • RTG-Retreats
    Portal Downloads
  • Job & Thesis Offers
  • FRASCAL goes ART
  1. Startseite
  2. Research
  3. Projects
  4. P4 – Fragmentation in Large Scale DEM Simulations

P4 – Fragmentation in Large Scale DEM Simulations

Bereichsnavigation: Research
  • Projects
    • P1 - Chemistry at the Crack Tip
    • P2 - Atomistics of Crack-Heterogeneity Interactions
    • P3 - Fracture in Polymer Composites: Nano to Meso
    • P4 - Fragmentation in Large Scale DEM Simulations
    • P5 - Compressive Failure in Porous Materials
    • P6 - Fracture in Thermoplastics: Discrete-to-Continuum
    • P7 - Collective Phenomena in Failure at Complex Interfaces
    • P8 - Fracture in Polymer Composites: Meso to Macro
    • P9 - Adaptive Dynamic Fracture Simulation
    • P10 - Configurational Fracture/Surface Mechanics
    • P11 - Fracture Control by Material Optimization
    • P12 - Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
    • P13 - Modelling of the development of deformation bands in porous rocks and their influence on the permeability evolution of reservoirs
    • P14 - Passage from Atomistic-to-Continuum for Quasistatic and Dynamic Crack Growth
  • Publications

P4 – Fragmentation in Large Scale DEM Simulations

Principal Advisor

Prof. Dr. Thorsten Pöschel

Department Chemie- und Bioingenieurwesen (CBI)
Lehrstuhl für Multiscale Simulation of Particulate Systems

  • Telefon: +49 9131 85-70501
  • E-Mail: thorsten.poeschel@fau.de

Co-Principal Advisor

Prof. Dr. Michael Zaiser

Department Werkstoffwissenschaften (WW)
Lehrstuhl für Werkstoffsimulation

  • Telefon: +49091165078-65060
  • E-Mail: michael.zaiser@fau.de

Doctoral Researchers

Second Cohort:

Utku Canbolat, M. Sc.

Department Chemie- und Bioingenieurwesen (CBI)
Lehrstuhl für Multiscale Simulation of Particulate Systems

  • Telefon: +49 9131 85-70490
  • E-Mail: utku.canbolat@fau.de

First Cohort:

Velasco de Sabogal, Ali Mauricio


Marzulli, Valentina

Associated Doctoral Researchers

Second Cohort:

Angel Santarossa

Department Chemie- und Bioingenieurwesen (CBI)
Lehrstuhl für Multiscale Simulation of Particulate Systems

  • Telefon: +49 9131 85-70482
  • E-Mail: angel.santarossa@fau.de

P4 - Fragmentation in Large Scale DEM SimulationsMotivation

During the past decade, the technique of Discrete Element Simulations (DEM) made great progress and by now it is generally acknowledged as a reliable tool for bulk solids description in a variety of applications [1], [2]. There is a number of models available in the literature to describe fragmentation of particles in DEM [3], [4] simulations, however, by now the predictive power of these models is still poor, especially when dealing with fragmentation probabilities and fragment size distribution. Current approaches use purely spherical models and there is still a gap in predictive fragmentation models for non-spherical particles.

Objectives

The aim of the present research project is to develop a particle model which allows for both realistic modelling of fragmentation in DEM simulations and at the same time highly efficient large scale simulations.

Work plan

To enable large scale DEM simulations with realistic modelling of fragmentation we will proceed with i) perform full 3d simulations of non-spherical particles using a multi-sphere [5] approach; ii) statistically correct the load dependent fragmentation probabilities and fragment size distribution, in agreement with empirical laws; iii) modelling of wear (ageing) trough incorporation of micro-crack modelling using a variant of bonded particle description [3], in agreement with empirical laws and with micro-mechanical (atomistic) simulations performed in the RTG; iv) correct representation of particle-size dependent fragmentation properties through a hierarchical multi-sphere representation of particles and fragments using multi-scale descriptions. The derived particle model shall be incorporated to a DEM environment like Liggghts [6]. We expect to be able to simulate systems of typically 105 non-spherical particles over process-relevant times. As a benchmark for the predictive power and the efficiency of the model we plan to simulate milling processes and compare the results with experimental results available in the literature.

[1]  H. P. Zhu, Z. Zhou, R. Yang and A. Yu, “Discrete particle simulation of particulate systems: Theoretical developments,” Chemical Engineering Science, vol. 62, pp. 3378-3396, 2007.

[2]  N. Gunkelmann, M. Montaine and T. Pöschel, “Stochastic behavior of the coefficient of normal restitution,” PHYSICAL REVIEW E, vol. 89, p. 022205, 2014.

[3]  D. Potyondy and P. Cundall, “A bonded-particle model for rock,” International Journal of Rock Mechanics and Mining Sciences, vol. 41, pp. 1329-1364, 2004.

[4]  T. Pöschel and T. Schwager, Computational Granular Dynamics, Springer-Verlag Berlin Heidelberg, 2005.

[5]  E. J. R. Parteli and T. Pöschel, “Particle-based simulation of powder application in additive manufacturing,” Powder Technology, vol. 288, pp. 96-102, 2016.

[6]  C. Kloss, C. Goniva, A. Hager, S. Amberger and S. Pirker, “Models, algorithms and validation for opensource DEM and CFD-DEM,” Progress in Computational Fluid Dynamics, An International Journal, Vols. 12, No.2/3, pp. 140-152, 2012.




  • Contact
  • Intranet
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Nach oben