• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Stellenangebote
  • Lageplan
  • Hilfe im Notfall

Menu Menu schließen
  • Team
    • Principal Advisors
    • Doctoral and Postdoctoral Researchers
    • Associated Doctoral Researchers
    • Mercator Fellows
    • External Advisory Board
    • Coordination and Administration
    • Alumni
    Portal Team
  • Research
    • Projects
      • P1 – Chemistry at the Crack Tip
      • P2 – Atomistics of Crack-Heterogeneity Interactions
      • P3 – Fracture in Polymer Composites: Nano to Meso
      • P4 – Fragmentation in Large Scale DEM Simulations
      • P5 – Compressive Failure in Porous Materials
      • P6 – Fracture in Thermoplastics: Discrete-to-Continuum
      • P7 – Collective Phenomena in Failure at Complex Interfaces
      • P8 – Fracture in Polymer Composites: Meso to Macro
      • P9 – Adaptive Dynamic Fracture Simulation
      • P10 – Configurational Fracture/Surface Mechanics
      • P11 – Fracture Control by Material Optimization
      • P12 – Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
      • P13 – Modelling of fragmentation and fracturing processes in deformation bands and faults, from single grains to seismic-scale faults
      • P14 – Passage from Atomistic-to-Continuum for Quasistatic and Dynamic Crack Growth
    • Publications
    Portal Research
  • Qualification
    • Registration
    • Registration Example
    • Registration P 1
    • Registration P 3
    • Registration P 4
    • Registration P 5
    • Registration P 6
    • Registration P 7
    • Registration P 8
    • Registration P 9
    • Registration P 10
    • Registration P 11
    • Registration P 12
    • Registration P 13
    • Registration P 14
    • Registration P1 (cohort 3)
    • Registration P4 (cohort 3)
    • Registration P5 (cohort 3)
    • Registration P6 (cohort 3)
    • Registration P7 (cohort 3)
    • Registration P9 (cohort 3)
    • Registration P10 (cohort 3)
    • Registration P11 (cohort 3)
    • Registration P14 (cohort 3)
    Portal Qualification
  • Events
    • Upcoming Events – Calendar
    • Archive
      • 2023
      • 2022
      • 2021
      • 2020
      • 2019
      • 2018
    Portal Events
  • Equal Opportunities
    • The Sky is the Limit – Female STEM Scientists at FAU
    • Workshops & Seminars for Gender Equality at FRASCAL
    • Further Measures at FRASCAL
    • Office for Gender and Diversity
    Portal Equal Opportunities
  • Downloads
    • General Information
    • Annual Reports
    • Alumni and Visitors Workshops
    • RTG Seminars
    • RTG-Retreats
    Portal Downloads
  • Job & Thesis Offers
  • FRASCAL goes ART
  1. Startseite
  2. Research
  3. Projects
  4. P7 – Collective Phenomena in Failure at Complex Interfaces

P7 – Collective Phenomena in Failure at Complex Interfaces

Bereichsnavigation: Research
  • Projects
    • P1 - Chemistry at the Crack Tip
    • P2 - Atomistics of Crack-Heterogeneity Interactions
    • P3 - Fracture in Polymer Composites: Nano to Meso
    • P4 - Fragmentation in Large Scale DEM Simulations
    • P5 - Compressive Failure in Porous Materials
    • P6 - Fracture in Thermoplastics: Discrete-to-Continuum
    • P7 - Collective Phenomena in Failure at Complex Interfaces
    • P8 - Fracture in Polymer Composites: Meso to Macro
    • P9 - Adaptive Dynamic Fracture Simulation
    • P10 - Configurational Fracture/Surface Mechanics
    • P11 - Fracture Control by Material Optimization
    • P12 - Postdoctoral Project: Quantum-to-Continuum Model of Thermoset Fracture
    • P13 - Modelling of the development of deformation bands in porous rocks and their influence on the permeability evolution of reservoirs
    • P14 - Passage from Atomistic-to-Continuum for Quasistatic and Dynamic Crack Growth
  • Publications

P7 – Collective Phenomena in Failure at Complex Interfaces

Principal Advisor

PD Dr. Paolo Moretti, Akad. ORat

Department Werkstoffwissenschaften (WW)
Lehrstuhl für Werkstoffsimulation

  • Telefon: +49091165078-65071
  • E-Mail: paolo.moretti@fau.de

Co-Principal Advisor

Prof. Dr. Bernd Meyer

Department Chemie und Pharmazie
Professur für Computational Chemistry (Prof. Dr. Meyer)

  • Telefon: +49 9131 85-20403
  • E-Mail: bernd.meyer@fau.de

Doctoral Researchers

Third Cohort:

Leon Pyka, M. Sc.

Department Werkstoffwissenschaften (WW)
Lehrstuhl Werkstoffsimulation

  • E-Mail: leon.pyka@fau.de

Second Cohort:

Christian Greff, M. Sc.

Department Werkstoffwissenschaften (WW)
Lehrstuhl für Werkstoffsimulation

  • Telefon: +49091165078-65063
  • E-Mail: christian.greff@fau.de

First Cohort:

Esfandiary, Nosaibeh


Esfandiary, Samaneh

P7 - Collective Phenomena in Failure at Complex InterfacesMotivation

Interface failure in both tension and shear is characterized by a dynamic interplay of local processes (breaking of bonds, interface contacts or – in case of frictional interfaces – asperities) and long-range elastic load re-distribution [1] which may occur either quasi-statically or in a dynamic manner associated with wave propagation phenomena [2], [3] and can be mapped onto a network of partly break-able load transferring elements. This interplay may give rise to complex dynamics which are strongly influenced by contact geometry and also the chemical properties of the interface. A particularly simple case is the transition from static to sliding friction between continuous bodies where such dynamic collective phenomena are being discussed under the label of ‘detachment waves’.

Objectives

The goal of P7 is to generalize this concept of ‘detachment waves’ to general problems of failure of frictional or adhesive joints, and to interfaces and bodies which possess a complex multi-scale chemical or geometrical structure, including hierarchical geometrical structures as encountered in biosystems.

Work plan

Our strategy is based upon network models (fuse modes, beam models) for the description of quasi-static or dynamic elastic load re-distribution at interfaces, providing a discretization of continuum elasticity equations that allows accounting for complex microstructural features. Network topologies can be tuned in order to account for spatially varying contact properties, complex correlation structures, fractal contact areas and/or biomimetic hierarchical microstructures. Using this methodology, we aim at understanding the collective phenomena occurring during interface failure – specifically, avalanche phenomena, evolution of real contact area, and precursor dynamics to failure. Based upon the mesoscale model of the material and interface morphology we aim at deriving global, effective parameters characterizing interface strength (collaboration with P8) and at developing strategies for the optimization of these parameters (joint work with P11). The possibility of parameterizing the mesoscale models by atomic simulations will be explored (work with P2 and P3) in order to represent various types of interfaces ranging from bio-film adhesion to interfaces between metals or polymers.

[1]        S. Sandfeld, Z. Budrikis, S. Zapperi and D. Fernandez-Castellanos, “Avalanches, loading and finite size effects in 2D amorphous plasticity: results from a finite element model,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2015, no. 2, p. P02011, 2015.

[2]        S. M. Rubinstein, G. Cohen and J. Fineberg, “Detachment fronts and the onset of dynamic friction.,” Nature, vol. 430, 2004.

[3]        A. Taloni, A. Benassi, S. Sandfeld and S. Zapperi, “Scalar model for frictional precursors dynamics,” Scientific Reports, vol. 5, 2015.




  • Contact
  • Intranet
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Nach oben